
The 100-Digit Challenge Problems

 1. Evaluate lim
ϵ→0

∫ϵ
1 1

x
cos  ln x

x
 ⅆ x.

 2. A photon starts at  1

2
,

1

10
 and travels east with speed 1. If there are reflecting cir-

cles of radius
1

3
 centered at each integer lattice point, how far is the photon from the

origin at time 10?

 3. What is the norm of the following infinite matrix viewed as an operator on ℓ2, the

space of infinite square-summable sequences:

1
1

2

1

4

1

7

1

11
· · ·

1

3

1

5

1

8

1

12

1

17
· · ·

1

6

1

9

1

13

1

18

1

24
· · ·

1

10

1

14

1

19

1

25

1

32
· · ·

1

15

1

20

1

26

1

33

1

41
· · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

 ?

 4. What is the global minimum of

sin(60 ⅇy)+sin(70 sin x)+sin(sin[80 y])-sin[10 (x + y)]+ 1

4
x2 +y2 +ⅇsin(50 x)?

 5. If p (z) is the cubic polynomial that best approximates 1 / Γ(z) on the unit disk in the

sup-norm (i.e., worst case), what is the error in this approximation?

 6. An unbiased random walk on the integer lattice returns to the origin with probabil-

ity 1. For which ϵ is this probability 1/2, where ϵ biases the east-west portion of the

walk (i.e.,
1

4
- ϵ, 1

4
+ ϵ, 1

4
, and

1

4
 are the east, west, north, and south probabilities)?

 7. Let A be the 20 000×20 000 matrix having the primes (2, 3, 5, …, 224737) along

the main diagonal, and with aij = 1 whenever i - j is a power of 2, and 0 elsewhere.

What is the upper left entry of the inverse of A?

 8. When is the temperature at the center of a 2×2 square equal to 1, assuming the

starting temperature is 0 everywhere except on one side, where it is 5, and the tempera-

tures on the sides do not change? Use ut = uxx + uyy where u(x, y, t) is the temperature at

time t.

 9. Which α in [0, 5] maximizes (2 + sin(10 α)) ∫0

2
xα sin  α

2-x
 ⅆ x?

10. What is the probability that an infinitely small Brownian motion particle in the

plane that starts at the center of a 10×1 rectangle hits one of the short sides before one

of the long sides? "Brownian motion" means that the particle follows a 2-dimensional

random walk with infinitesimal step length until it hits the boundary of the rectangle.

of the long sides? "Brownian motion" means that the particle follows a 2-dimensional

random walk with infinitesimal step length until it hits the boundary of the rectangle.

Brief Solutions

Here are solutions to the problems based on the work of the Macalester team of Danny

Kaplan and Stan Wagon, with additional notes regarding better solutions when we

know them. In most cases there are better solutions than ours to the 10-digit problem (it

is arguable, of course, but our approach was the right one, or close to it, for #1, #2, #8,

and #9). One hundred digits are given in all cases but one; thanks to F. Bornemann and

J. Boersma's team) for the extra digits in cases we did not have them. Mathematica code

giving a complete solution is included in all cases except #2, which, while not difficult,

requires the most programming. As far as our own solutions go, we can say that we had

14 digits to all the problems, with 14 or 15 occurring on #3, #5, #7, and #10. Using our

work and that of others, all problems except #3 yield 100 digits with no problem (when

one uses the proper algorithm, which can be hard to find). Problem 3 is more difficult.

On the other hand, it is tricky to come up with a good measure of difficulty, as different

people have different expertise. For our team, the last four problems to be solved were

#8, #6, #10, and #5, in that order, with #5 being last (Trefethen called #5 "exceptionally

difficult"; three of the teams scoring 99 missed the tenth digit on #5). The other six we

could handle without much research or code, but the last four required library work or

heavy programming.

As far as getting 500 digits in reasonable time, that can be done for #2, #4, and #8 by

our methods; for #5, #6, #7, and #10 by others (and probably #1 and #9). But we must

not get too caught up in the search for digits; the real point of this exercise is the search

for algorithms. Note that all problems can be solved using machine precision, except

#2, for which it is probably impossible to avoid high precision.

1 Divide and Conquer

The Oscillatory method to Mathematica's NIntegrate solves this, once the

integral is transformed using Lambert's W-function (also known as ProductLog) to

∫0
∞ cos u

u1+ 1

W(u) 
ⅆu. Now the option is not needed. This method evaluates the integral

between zeroes and extrapolates the partial sums to the limit. One can get more by

summing an initial segment by hand and then using the method just described on the

tail. Our technique can be used to obtain 60 digits. Bornemann, using fancier techniques

to accelerate convergence, obtained 100 digits. Boersma and Jansen used contour integra-

tion to transform the integral to two integrals that can be easily computed numerically.

The first 100 digits:

0.323367431677778761399370087952170446651046625725469661681036443431790

2

The first 100 digits:

0.323367431677778761399370087952170446651046625725469661681036443431790

3372106728944319303704641024514

NIntegrate Cos[u]
u 1 + 1

ProductLog[u] 
, {u, 0, ∞}, WorkingPrecision → 20

0.32336743167744626415

2 A Sea of Mirrors

Program the geometry and start with the initial conditions to, say, 50 digits. Then Mathe-

matica's automatic precision control will show how precision is lost (about 3 digits per

reflection). Starting with 50 digits is enough to get the answer to 10 digits. We can get

500 digits easily. The answer is

0.995262919443354160890311809426721621029466922734154349803208858072986

1796228306320991749818976188760.

3 A Singular Problem

The value sought is the largest singular value of the matrix. Approximate the matrix by

the upper-left 2048×2048 matrix and use Mathematica's SingularValues function

(which uses the QR algorithm) or use Matlab's norm function. Confidence in the

answer is obtained by using extrapolation on the squence of values one gets by looking

at all upper-left submatrices whose dimension is a power of 2. We got 13 digits. Borne-

mann obtained 20 digits. R. Strebel of ETH-Zurich obtained 40 digits:

1.274224152821228188212340639725078099472

f[i_, j_] := 2.

2 - i + i2 - 3 j + 2 i j + j2 ;
SingularValueDecomposition[Array[f, {2048, 2048}]]〚2, 1, 1〛 // InputForm

1.2742241522691704

Here is the extrapolation method. We look at 13 powers of two and then extrapolate.

There are ways (using higher precision) to learn that the extrapolated result is likely

correct to 13 digits. In fact, the extrapolated result below turns out to be correct when

rounded to 15 digits.

 3

mat[n_] := Array[f, {n, n}]
data = Tablen, SingularValueDecompositionmat2n〚2, 1, 1〛, {n, 0, 12};
TableForm[data]
0 1.

1 1.18335

2 1.25254

3 1.27005

4 1.27353

5 1.27412

6 1.27421

7 1.27422

8 1.27422

9 1.27422

10 1.27422

11 1.27422

12 1.27422

NumericalMath`NSequenceLimit[Last /@ data] // InputForm

1.2742241528212164

4 How Low Can You Go?

It is not hard to see that the global minimum is at least as low as -3.24, and it then

follows from the structure of the function (two of the six terms have easy-to-measure

positive values; the sines are never less then –1 or, in one case, –0.84) that the true

minimum lies inside the unit circle. Then we used a root-finding method to find all the

critical points and choose the correct one. The root-finding method was developed by

Wagon in 1996 for the VisualDSolve project in differential equations, and uses data

from a contour plot to find all solutions to a pair of equations. We can get 500 digits

easily. The answer to 100 digits is

-0.3306868647475237280076113770898515657166482361476288217501293085496-

309199837888295035825488075283499

.

Here is a solution that finds all the critical points by using the FindAllCrossings

function just alluded to.

f[x_, y_] := x2 + y2  4 + ⅇSin[50 x] +
Sin[60 ⅇy] + Sin[70 Sin[x]] + Sin[Sin[80 y]] - Sin[10 (x + y)];

f[{x_, y_}] := f[x, y];
fx = ∂xf[x, y]; fy = ∂yf[x, y];
Min[Flatten[Table[f[x, y], {x, -1, 1, 0.01}, {y, -1, 1, 0.01}]]]
-3.24646

We now find all critical points (there are 2720 in the unit square), keeping any for

which the function value is under -3.2. We used a collection of 64 subsquares of the

2×2 square around the origin, to save memory. And by increasing the resolution and

4

which the function value is under -3.2. We used a collection of 64 subsquares of the

2×2 square around the origin, to save memory. And by increasing the resolution and

watching the results, we gain evidence for the completeness of the count. We include

here the complete code for FindAllRoots2D (from the VisualDSolve package),

which finds all solutions to two equations in an interval. The resolution is controlled by

the PlotPoints option which controls the resolution of the contour plot used to get

started. We did not attempt to prove that a certain resolution was enough for the prob-

lem at hand, but we did examine images of the crossing contours and that convinced us

that we had all the roots.

Options[FindAllRoots2D] = {ContourData → Automatic, PlotPoints → Automatic,

MaxRecursion → Automatic, SeedsOnly → False, SameTest → Automatic};

FindAllRoots2D[funcs_, {x_, a_, b_}, {y_, c_, d_}, opts___] :=
Module[{fZero, seeds, signs, fy},
fy = Compile[{x, y}, Evaluate[funcs〚2〛]];
cPlot = (ContourData /. {opts} /. Options[FindAllRoots2D]);
If[cPlot === Automatic,

cPlot = ContourPlot[funcs〚1〛 ⩵ 0, {x, a - (b - a) / 97, b + (b - a) / 103},
{y, c - (d - c) / 98, d + (d - c) / 102},

Evaluate[FilterRules[{opts}, Options[ContourPlot]]]]];
fZero = Cases[Normal[cPlot], Line[z_] ⧴ z, Infinity];
seeds = Flatten[((signs = Sign[Apply[fy, #1, {1}]];
#1〚1 + Flatten[Position[

Rest[signs * RotateRight[signs]], -1 0]]〛) &) /@ fZero, 1];
If[(SeedsOnly /. {opts} /. Options[FindAllRoots2D]) || seeds ⩵ {},
seeds,

Select[Union[
({x, y} /. FindRoot[{funcs〚1〛, funcs〚2〛}, {x, #1〚1〛}, {y, #1〚2〛},

Evaluate[FilterRules[{opts}, Options[FindRoot]]]] &) /@ seeds,

SameTest → (SameTest /. {opts} /. Options[FindAllRoots2D])],
a ≤ #1〚1〛 ≤ b && c ≤ #1〚2〛 ≤ d &]]];

cps =
FindAllRoots2D[{fx, fy}, {x, -1, 1}, {y, -1, 1}, PlotPoints → 160] // Quiet;

Length[cps]
2720

lowest = Sort[cps, f[#1] < f[#2] &]〚1〛
f[lowest]
{-0.0244031, 0.210612}
-3.30687

 5

And now it is easy to zoom in to a more precise value.

FindMinValue[f[x, y], {x, -0.024}, {y, 0.211}, WorkingPrecision → 20]
-3.3068686474752372801

Here is an alternative solution using a combinatorial search technique that we learned

about for problem 5. This is not the ideal way, but it gets the answer very quickly; the

contour-based root-finding given above is better, but the root-finder (code not given

here) takes a little programming. The SimulatedAnnealing setting to Method

also works for this problem.

NMinimizef[x, y], x2 + y2 ≤ 1, {x, y}, Method → "DifferentialEvolution"
{-3.30687, {x → -0.0244031, y → 0.210612}}

Our methods described here do not provide proof of correctness. The Wolfram

Research team developed a method using interval arithmetic that does provide such

proof (it is in our book).

5 Lost in Hyperspace

The best algorithm we found for this (which is far from the best algorithm that exists!)

is the differential evolution method, a type of genetic algorithm included in Mathemati-

ca's NMinimize function. Of course, one must first get an efficient way to get the

error for a given cubic. Several observations help get that quickly, the most important of

which is that the maximum error occurs on the upper half of the unit circle.

The code that follows produces 15 digits (but with no proof that they are correct). Note

that the problem did not specify that p(z) was to have real coefficients. The Eindhoven

team's solution (link given earlier) provides a proof. We did find another method that

reduced the problem from a 4-dimensional optimization to a 1-dimensional optimiza-

tion of the results of a 3-dimensional optimization, and that technique was good enough

to get us 15 digits.

But now I see that experts (Laurie, Bornemann, Jansen & Boersma) use the method of

Chebyshev approximation, which is efficient and provides a proof of correctness.

Jansen and Boersma obtained 100 digits (and their method yields 500 with no problem),

which are:

0.214335234590459639461526400184749396113407287789516708073934985970987

67607405459816947988478883053305903475633.

6

maxerror[{a_, b_, c_, d_}] := MaxAbs[a - b + c - d], FindMaximumt = ⅇⅈ θ;

Absa t3 + b t2 + c t + d - 1

Gamma[t] ,

{θ, #1 - 0.03, #1 + 0.03}, PrecisionGoal → 12〚1〛 & /@ {1.40, 2.26};

maxerror[{-0.603, 0.625, 1.02, 0.006}]
0.214865

DifferentialEvolution[n_, seeds_] :=
Module{best, current, children, vals, childval},
current = Table[Random[Real, #] & /@ seeds, {n}];
vals = maxerror /@ current;
oldbest = Min[vals];
Dochildren =

Table[{1, 0.4, -0.4}.current〚Table[Random[Integer, {1, n}], {3}]〛, {n}];
Do[If[(childval = maxerror[children〚j〛]) < vals〚j〛,

{current〚j〛, vals〚j〛} = {children〚j〛, childval}], {j, n}];
IfMod[i, 10] ⩵ 0, best = Min[vals];
IfAbs[best - oldbest] < 10-14, Break[], oldbest = best, {i, 300};

First[Sort[Transpose[{vals, current}]]];
SeedRandom[1];
DifferentialEvolution[60, {{-2, 2}, {-2, 2}, {-2, 2}, {-2, 2}}]
{0.214335, {-0.603343, 0.625212, 1.01976, 0.00554195}}

We tried to get more digits. The best cubic we found is

 - 0.603343220479925996 z3 + 0.6252119162842364 z2 +
1.01976185283468839 z + 0.00554195066098559

,

for which the maximum error is 0.21433 52345 90459 64277. It seemed likely that 16

or 17 of these digits are correct. It turns out that 16 are; 17 if one rounds.

An earlier dimenson-reduction approach of ours is interesting and did get us 15 digits.

First one observes that, when one is close, the error curve has local maxima at 1.40,

2.26, and π, where the first two are approximate and the last is exact. Moreover, the

error at π is a - b + c - d. So we can specify e, the error at π, and look at the family of

cubics of the form a z3 + b z2 + c z + a - b + c + e. We can try to find the cubic in this 3-

dimensional family for which the overall max-error is least. Then it is simply a matter

of finding the value of e for which this abc-minimum value is least, and FindMini-

mum is up to the task on this 3-dimensional problem (and then on the 1-dimensional

 7

of finding the value of e for which this abc-minimum value is least, and FindMini-

mum is up to the task on this 3-dimensional problem (and then on the 1-dimensional

problem).

This approach can be viewed as a coordinate transformation of the 4-dimensional prob-

lem. Simply using FindMinimum on the raw 4-dimensional problem did not work

well. Trying to lower the dimensions directly (fixing d, say, and optimizing a, b, c) does

not work. A possible reason for this difference is that as we change e a little bit the

overall shape of the curve does not change much; this is analogous to using Bézier

polynomials as a design tool. This means that the location of the other two bumps does

not change much, and the seed for that search is good. We store the locations found by

the abc problem and use them for the next value of e, thus adding efficiency to the 3-

dimensional search.

The solution by Boersma and Jansen of the Eindhoven team is noteworthy, as they

found a lemma of Vidensky in a 1968 book by Smirnov and Lebedev [Functions of a

Complex Variable, Constructive Theory, p. 450-452] that reduces the problem in quite a

simple way to six simultaneous equations that can be solved by standard root-finding.

Here is their code, which easily yields 500 digits.

8

w[a_, b_, c_, d_, z_] := 1

Gamma[z] - a - b z - c z2 - d z3;

det[u_, z_] := Det
1 z z2 z3

1 -1 1 -1
1 Conjugate[z] Conjugate[z]2 Conjugate[z]3
1 Conjugate[u] Conjugate[u]2 Conjugate[u]3

;

dw[z_, a_, b_, c_, d_] :=
Imz w[a, b, c, d, Conjugate[z]] PolyGamma[z]

Gamma[z] + b + 2 c z + 3 d z2 ;

a - b + c - d /. FindRoot
a - b + c - d ⩵ Abswa, b, c, d, ⅇⅈ t1,
a - b + c - d ⩵ Abswa, b, c, d, ⅇⅈ t2,
dwⅇⅈ t1, a, b, c, d ⩵ 0,

dwⅇⅈ t2, a, b, c, d ⩵ 0,

ArgConjugatewa, b, c, d, ⅇⅈ t1
detⅇ ⅈ t1, ⅇ ⅈ t2  ⩵ 0,

Arg Conjugatewa, b, c, d, ⅇⅈ t2
detⅇ ⅈ t2, ⅇⅈ t1  ⩵ 0,

{a, {0.00555, 0.0059}}, {b, {1.0198, 1.0206}}, {c, {0.6252, 0.6261}},
{d, {-0.6033, -0.602}}, {t1, {1.37, 1.40}}, {t2, {2.25, 2.26}},
WorkingPrecision → 25, AccuracyGoal → 15

{0.214335234590459639461526, 0.214335234590459639461526}

6 To Be Fair, It Must Be Biased

The return probability has the form 1 - 1

∑n=0
∞ p(n, ϵ) where p (n, ϵ) is the probability of

return to the origin after 2 n steps; this can be written in terms of binomial coefficients

as p(n, ϵ) = 16-n 2 n

n
∑k=0

n n

k

2

1 - 16 ϵ2k. The sum can be estimated by using a

partial sum or, for more digits, using an extrapolation technique to estimate the tail.

Then standard root-finding techniques tell when the expression is 2. The answer is

0.061913954473990942848175216473212176999638774998362076061467258859931

01029759615845907105645752087861.

There is also a closed form for this sum in terms of elliptic functions. Several people

observed this. Here is how to use the elliptic function.

 9

ϵ /. FindRoot π 2 + 16 ϵ2 - 2 1 - 16 ϵ2
EllipticK 2 1-16 ϵ2

1-16 ϵ2 -1-8 ϵ2 
⩵ 2, {ϵ, 0.1}

0.061914

And there is a well-known connection between this elliptic function and the very-fast-to-

compute arithmetic-geometric mean. Thus, as observed by Bornemann, it is faster and

more elegant to use the following, which gives the same result, and gives 500 digits in

under a second.

ϵ /. FindRoot
2 ArithmeticGeometricMean 1 + 8 ϵ2 - 1 - 16 ϵ2 , 1 + 8 ϵ2 + 1 - 16 ϵ2  ⩵
1, {ϵ, 0.1}, WorkingPrecision → 500

0.061913954473990942848175216473212176999638774998362076061467258859931010
2975961584590710564575208786137167776216460354770352165761978623892076769
2652100542462229364610602198310866645011155144480116905438357082333052235
5852470934961786758865793202619253229818427553983230659538396699029700379
2014502933395286379155134284131738195515470816040798760479449662526739040
7048570909176364536425275876175019368190664354266513041076927589642937945
7358898700313736928994949809378129095499896576724082600428539419

7 Inverting an Almost-Zero Matrix

The conjugate gradient method solves this in about 2000 iterations, and is easy to pro-

gram. Matlab had this built-in in a form that could solve the problem. The answer is

0.72507834626840. The Mathematica code that follows uses compilation for speed.

Bornemann obtained 100 digits. Here they are:

0.725078346268401167468687719251160968869180594479508957878164769207773

1899945962835735923927864782020. D. Laurie reports that even Jacobi's iterative

method is able to solve this.

10

diag[dim_] := diag[dim] = N[Prime[Range[dim]]]

mult = Compile{{w, _Real, 1}},
Module{v = diag[Length[w]] w, d = Length[w]}, Dov〚i〛 +=

Plus @@ wi + Join2Range[0,Log[2,d-i+1-0.1]], -2Range[0,Log[2,i-0.1]], {i, d};
v, {{diag[_], _Real, 1}};

conjgrad = Compile{{dim, _Integer}, {start, _Real, 1}, stop}, Module
{x = start, rold, r2, a, r = Prepend[Table[0., {dim - 1}], 1.], p, temp},
p = r -= mult[x];
r2 = Plus @@ r2;
Dotemp = mult[p];
a = r2

p.temp
;

x += a p;

rold = r2;

r -= a temp;

r2 = Plus @@ r2;
p = r + r2 p

rold
,

{stop};
x〚1〛, {{mult[_], _Real, 1}};

conjgrad[20 000, Table[1, {20 000}], 3000]
0.725078

 8 It Gets Hot, but When?

The standard technique of separation of variables and Fourier series works. Many texts

explain how to use these techniques for the case that the boundary is held constant at 0

and an initial temperature is given for the interior, and for the case where the boundary

is nonconstant and the steady-state solution is sought. It is not hard to combine these

two methods to solve the problem at hand. The answer is:

0.424011387033688363797433668593256451247762090664274762197112495913310

1769575636922970724422944770112.

The following is a very terse solution, where some numerical work was used to deduce

that the steady state solution at the center is exactly 5 /4 (I discovered this numerically,

but it is a special case of a known family of series (I. J. Zucker, 1984, see Problem 10),

and also follows from the symmetry of the problem. Only three terms of the series were

 11

but it is a special case of a known family of series (I. J. Zucker, 1984, see Problem 10),

and also follows from the symmetry of the problem. Only three terms of the series were

used, which additional computation shows is adequate. Using more terms yields 500

digits easily. By using the explicit partial sum in the code and simplifying the equation

a bit, the final expression is nicely simple (essentially a ninth-degree polynomial

equation).

s = ⅇ- 1

2
π2 t

;

t /. FindRoot80 s9 - 480 s5 + 720 s ⩵ 9 π2, {t, 1}, AccuracyGoal → 9
0.424011

Here is the series that converges to 5/4 (the result alluded to above, with a multiplica-

tive constant stripped off, so the sum is different).

 ∑k=0

∞ (-1)k
2 k+1

sech π
2
(2 k + 1) = π

8

F. Bornemann observes that this series is a special case of a more general one which can

be expressed in terms of the modular λ elliptic function (see #10).

 9 Surprise

The integral has a closed form in terms of the Meijer G function. Since routines to

compute that are included in Mathematica, it is easy to use a standard optimization

method to find the answer. We can get 50 digits, but beyond that ran into a problem

with the G computation. Bornemann obtained 100 digits. They are:

0.785933674350371454565243986327545582962395459061866817581231807098910

3971494123651167706337659944953.

For the solution, we first discover the closed form, and then optimize it.

obj = Simplify(2 + Sin[10 α]) 
1

2

∞ (2 u - 1)α Sin[α u]
u2+α

ⅆu, α > 0

4 π Gamma[α]

MeijerG{},  3 + α
2

,
4 + α
2

, 1, 1,
3

2
,  1

2
, α2

16
 (2 + Sin[10 α])

FindMaximumobj, α, 78

100
,

79

100
, PrecisionGoal → 12〚2, 1, 2〛

0.785934

10 Think Outside the Box

We found that a very similar problem could be easily solved and that it agrees with the

given problem to within 10-21. Since the answer is about 10-7, this is enough. The

variation is to consider the region with no right boundary and ask for the probability

12

given problem to within 10- . Since the answer is about 10- , this is enough. The

variation is to consider the region with no right boundary and ask for the probability

that a particle hits the left before hitting the top or bottom. This turns out to have the

simple and exact answer:
4

π arctanⅇ-5 π. Doubling this, and doing some very rough

estimation on the discrepancy between our variation and the given problem, leads to the

slightly better formula
4

π arctan ⅇ-5 π 1 + 1

1 + 4

π arctan ⅇ-10 π
, which gives the answer to

the problem posed to 14 digits. The answer to 100 digits is:

0.000000038375879792512261034071331862048391007930055940725095690300227

99173436606852743276500842845647269910.

So, given the mathematical work we did, one can easily get 14 digits as follows.

N 4π ArcTanⅇ-5 π 1 + 1

1 + 4

π ArcTanⅇ-10 π 

3.83759× 10-7

Or 13 digits from:

N 8π ArcTanⅇ-5 π , 13
3.837587979251× 10-7

N 8π ArcTanⅇ-5 π, 20 
3.8375879792513132589× 10-7

Because the argument is small, one gets the same digits even if the arctangent is

ignored. We were lucky, since our method would fail if the rectangle was closer to a

square!

Bornemann showed that the exact answer to the given question is
4

π ∑k=0
∞ (-1)k

2 k+1
sech[5 π (2 k + 1)], which is very similar to the steady-state series in #8.

One term of this series gives 14 digits. Moreover, Bornemann observed that this series

equals 8π∑k=0
∞ (-1)karctanⅇ-(2k+1) 5 π (the first term of which is our arctan approxima-

tion) and it is well known (Borwein & Borwein, Pi and the AGM, §3.2, exercise 12)

that these series equal
2

π arccos λ(ⅈ /10) , where λ is the modular λ elliptic function.

This formula is fast, taking only a small fraction of a second to get 500 digits.

N 2π ArcCos ModularLambda ⅈ
10

 , 20
3.8375879792512261034× 10-7

 13

