
A Paradox Arising from the 

Elimination of a Paradox
Abstract.   We present  a  result  of  Mycielski  and  Sierpiński—remarkable  and  underappreciated  in  our  view—showing that  the  natural  way of

eliminating the Banach–Tarski paradox by assuming all sets of reals to be Lebesgue measurable leads to another paradox about division of sets

that is just as unsettling as the paradox being eliminated. The division paradox asserts that the reals can be divided into nonempty classes so that

there are strictly more classes than there are reals.

1.   INTRODUCTION.   The  Zermelo–Fraenkel  axioms  (ZF)  were  introduced  a  century  ago  to  avoid  logical  paradoxes,

notably Bertrand Russell’s: Does the set consisting of every set that is not a member of itself contain itself? The axiom of

choice (AC)—first stated by Zermelo in 1904—asserts that for every set M of nonempty sets, there exists a set consisting of

exactly one element from each set in M. When AC is added, the resulting system is called ZFC. Excellent books about the

historical and technical aspects of AC are [7, 9, 12].

Working mathematicians don’t construct formal proofs in ZFC or any other system. Rather, they construct arguments

that  their  peers  find  convincing.  Nevertheless,  these  arguments  almost  always  correspond  to  formal  derivations  in  ZF  or

ZFC.  In  short,  while  alternatives  have  been  investigated,  ZFC  has  proven  to  be  a  robust  and  adequate  foundation  for

modern mathematics.

Yet some mathematicians harbor a nagging fear that AC might be too powerful. The issue is not that AC might yield

an inconsistency—Gödel proved that it does not—but rather that it leads to inconveniences such as nonmeasurable sets and,

more to the point, strikingly counterintuitive results. A recent example is in [5, 6], but really nothing underscores the point

more than the Banach–Tarski paradox, which shows that a solid ball B in ℝ3  decomposes into five pairwise disjoint sets Ai

so that B = ρ1 A1 ⋃ ρ2 A2 = ρ3 A3 ⋃ ρ4 A4 ⋃ ρ5 A5, where the unions are disjoint and ρi are rigid motions of ℝ3 (see [26]). This

duplication of  a  ball  defies  all  reason,  at  least  for  those  who are  uncomfortable  with  the  concept  of  a  nonmeasurable  set.

And the culprit is indeed AC.

For example, noted physicist and mathematician Roger Penrose wrote [17, pp. 14–15]:

Most mathematicians would probably regard the axiom of choice as ‘obviously true’, while others may regard it as a somewhat questionable

assertion which might even be false (and I am myself inclined, to some extent, towards this second viewpoint).

He goes on to say (p. 366):

It's not altogether uncontroversial that the axiom of choice should be accepted as something that is ‭ universally valid. My own position is to

‬be cautious about it. The trouble with this axiom is that it is a pure ‘existence’ assertion, without any hint of a rule whereby the set might be

specified. In fact, it has a number of alarming consequences. One of these is the Banach–Tarski theorem.

The  most  natural  way  to  eliminate  the  paradox  is  to  abandon  AC  and  adopt  the  axiom  that  all  sets  are  Lebesgue

measurable.  Under  this  addition,  the  Banach–Tarski  paradox evaporates  (see  note  1  in  Section 8).  Our  purpose  here  is  to

present and prove results of Mycielski and Sierpiński that are not generally known and show that this option, which sounds

so  reasonable,  actually  has  a  serious  drawback  that  leads  to  another  paradox,  one  that  is  just  as  disconcerting  as  the  one

being  eliminated.  Since  the  use  of  AC  has  not  proven  to  be  a  problem  for  mathematics—we  have  learned  to  live  with

nonmeasurable sets—this underscores the accepted view that ZFC is the proper foundation for mathematics.

To set  the  stage,  consider  the  National  Football  League,  with  its  32  teams and  32 ·53 = 1696 players.  If  the  players

were  assigned  to  teams in  some other  way,  subject  only  to  the  conditions  that  a  team cannot  have  zero  players  and  each

player can be on only one team, then there can certainly be more than 32 teams. But could there be more than 1696 teams?

Of course not. The idea of grouping players into nonempty teams so that the teams outnumber the players is ludicrous. It's

like finding a country that has more populated provinces than it has people. Yet this is the essence of the phenomenon that

we will present: this sort of thing can arise in a mathematical world without AC.

The main assertion we study here is analogous to the sports team example. The players are the real numbers with two

reals placed on the same team if and only if they differ by a rational. That is, we will look at ℝ/ℚ, the quotient group of the

additive group of reals using the subgroup of rationals. Consider the statement that (ℝ) < (ℝ/ℚ) (where ( · ) is cardinality; see

Section 2). This says that there are strictly more equivalence classes of reals than there are reals; we call this assertion the

division paradox.

2.  PRELIMINARIES.  The  ℝ/ℚ  equivalence  relation  has  x ~ y  if  and  only  if  x - y ∈ ℚ;  we  use  [x]  for  the  equivalence

class  x + ℚ  of  a  real  x.  Vitali  used this  relation to  construct  the  first  nonmeasurable  set.  He used AC to  get  X  containing

exactly one real from each class in ℝ/ℚ; then X  is not Lebesgue measurable. Our interest is in sets that are somewhat the

opposite of what Vitali considered. A set A of reals is ℚ-invariant if A = A + q for every rational q; such a set is a union of

some classes in ℝ/ℚ.



ℝ/ℚ
opposite of what Vitali considered. A set A of reals is ℚ-invariant if A = A + q for every rational q; such a set is a union of

some classes in ℝ/ℚ.

Cardinality is denoted by ( · ); in a choice-challenged world it is defined by: (X) = (Y ) if there is a bijection from X to Y .

By  the  classic  Schröder–Bernstein  theorem,  a  theorem  of  ZF,  this  is  equivalent  to  (X) ≤ (Y )  and  (Y ) ≤ (X),  where  (A) ≤ (B)
means  that  there  is  a  one-one  function  f : A → B.  Further,  (X) < (Y )  means  that  (X) ≤ (Y )  and  (X) ≠ (Y ).  Under  the  axiom  of

choice,  every  set  has  a  cardinality  from  the  well-ordered  collection  0, 1, 2,…, ℵ0, ℵ1, ℵ2,…;  without  AC,  there  exist

incomparable sets: X and Y  such neither (X) ≤ (Y ) nor (Y ) ≤ (X) holds.

A subset of ℝ is open if it is the union of open intervals; it is nowhere dense if every nonempty open interval contains

a nonempty subinterval  disjoint  from it.  A meager set  is  a  countable  union of  nowhere dense sets;  a  comeager  set  is  one

whose complement is meager. A set A of reals has the property of Baire if A differs from some open set G by a meager set

M (meaning A = G△M, where △ is symmetric difference).

Every  nested  sequence  of  nonempty,  bounded,  closed  sets  has  a  nonempty  intersection;  this  is  Cantor's  intersection

theorem, a theorem of ZF. The case of closed intervals is easy: the least upper bound of the left endpoints is in the intersec-

tion.  As  a  consequence,  the  real  line  is  not  meager;  given  nowhere  dense  sets  Ni,  construct  a  nested  sequence  of  closed

intervals with rational endpoints so that the nth interval is disjoint from Nn  and then intersect them all. The use of rational

endpoints means that this does not use the axiom of choice.  Alan: This might be one place where the referee wondered

why AC is not used. I guess it is like this: For each i, let f(i) be the least j such that there is a k so that the rational

interval q j, qk is disjoint from Ni, using a fixed enumeration of the rats. Then lub q f (i) is a real not in the union. But

do we really want to say this? This can always be phrased as a question to the editor.... Note that we do not need that

ℝ is nonmeager until §5, but we do use it there.

And  note  that  this  ¶  is  about  Cantor  intersection  for  closed  sets  of  reals.  Later  in  the  paper  we  use  Cantor

intersection for compact sets in a Hausdorff space.

Suppose now that A is a ℚ-invariant set of reals that is measurable or has the Baire property. Let λ denote Lebesgue

measure. Remarkably, in the measure case, if J  is any interval, λ(A ⋂ J) is either 0 or λ (J), and in the Baire case either A or

ℝ \ A is meager (we prove both in a moment). We need the fact that any Lebesgue measurable A is contained in a union of

open intervals with rational endpoints for which the sum of all the interval lengths is arbitrarily close to λ(A).  This is true

because  λ(A)  is  defined  to  be  the  outer  measure  of  A,  which  is  the  greatest  lower  bound of  the  aforementioned  sums for

countable sets of intervals that cover A. For more on zero-one laws, see Section 5, and also [16, chapter 21].

Theorem 1 (Zero-one law for ℝ /ℚ; ZF).  Let A ⊆ ℝ be ℚ-invariant. If A has the Baire property, then A is either meager

or comeager. If A is measurable, then either (a) A intersects all bounded intervals in measure zero; or (b) A intersects all

bounded intervals J in measure λ(J). If λ is restricted to [0,1], then any set that is ℚ-invariant (modulo 1) has measure 0 or

1.

Proof.  For the first, assume A is nonmeager and M  and G witness A having the Baire property; then G ≠ ∅. We claim that

if y ∉ A, then y ∈⋃q∈ℚ M + q, which proves that A is comeager. To prove the claim, choose q ∈ ℚ so that y ∈ G + q. This is

possible because the rational translates of any nonempty interval cover ℝ. Thus y - q ∈ G. Since y ∉ A and A is ℚ-invariant,

we have y - q ∉ A; so y - q ∈ G \ A ⊆ M. Hence y ∈ M + q.

Now  suppose  A  is  Lebesgue  measurable  and  ℚ-invariant;  let  B = A ⋂ [0,1]  and  α = λ(B).  We  will  show  that

λ(A ⋂ J) = α λ(J)  for  any  interval  J  with  rational  endpoints.  Letting  m, n ∈ ℕ,  ℚ-invariance  implies  that  this  holds  for

[m, m + 1]; it then extends to [0, m] by subdividing into unit intervals. Division of [0, m] into n equal subintervals then gives

the  property  for  [0, m /n],  from  which  one  gets  it  for  all  intervals  with  rational  ends  having  length  m /n.  Now  suppose

0 < α < 1. There is a family of intervals with rational endpoints {Ki}i=0
∞  covering B and having ∑i=0

∞ λ(Ki) = β, with α ≤ β < 1;

let ϵ = α (1 - β). The tail of the series approaches 0, so there is a finite union ⋃i=0
n Ki  that covers B except for a set of mea-

sure less than ϵ. Finite subadditivity of λ then gives the following contradiction

     α = λ(B) < ϵ + λ ⋃
i≤n

B⋂Ki ≤ ϵ + Σ
i≤n

λ(B⋂Ki) = ϵ + αΣ
i≤n

λ(Ki) ≤ α(1-β) + αβ = α.

The last sentence of Theorem 1 follows easily by considering ⋃{A + n : n ∈ ℤ}.  ◼

When  working  without  the  axiom of  choice,  one  usually  replaces  it  with  a  weaker  version  known  as  the  axiom of

dependent  choice  (DC).  Without  something  like  this,  λ  might  not  be  countably  additive  (worse,  a  countable  union  of

countable sets might not be countable). The statement of DC is: If * is a binary relation on a nonempty set X  and for every

x ∈ X  there is y ∈ X  with x*y, then there is a sequence (xn)n∈ℕ  such that xn *xn+1  for every n ∈ ℕ. Countable additivity of λ
(and the same for meager sets) follows from the axiom of choice for countable families of nonempty sets, a consequence of

DC
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*
x ∈ X  there is y ∈ X  with x*y, then there is a sequence (xn)n∈ℕ  such that xn *xn+1  for every n ∈ ℕ. Countable additivity of λ
(and the same for meager sets) follows from the axiom of choice for countable families of nonempty sets, a consequence of

DC.

We use LM for the assertion that all sets of reals are Lebesgue measurable. The theory ZF + DC + LM is consistent,

provided one assumes the consistency of the existence of an inaccessible cardinal (note 2). This is a remarkable connection,

especially because the inaccessible is both necessary and sufficient for this [18, 19, 24]. Because it appears that inaccessi-

bles do not introduce a contradiction, we will  treat  ZF + DC + LM as we do ZF: they are assumed to be consistent.  Simi-

larly, we use PB for the assertion that all sets of reals have the property of Baire. The theory ZF + DC + PB is equiconsistent

with ZF [19, 25]; the contrast to the connection of LM to large cardinals is surprising.

3.  THE DIVISION PARADOX.  We give here a self-contained and short proof of the division paradox in the context of

the familiar additive group ℝ and its rational subgroup. More precisely, we show that (ℝ) < (ℝ/ℚ) is a theorem of ZF (with

no assumption of any form of AC) when either LM or PB is assumed. Theorem 2 is due to Mycielski [13, 15] and Theorem

3 to Sierpiński [20, 21 (§8), 22, 23].

Theorem 2 (ZF).  (ℝ) ≤ (ℝ/ℚ).

Theorem 3 (ZF).  If ℝ/ℚ has a linear ordering ≼, then A = {x ∈ ℝ : [x] ≼ [-x]} is ℚ-invariant, is not Lebesgue measurable,

and does not have the property of Baire.

An injection from ℝ/ℚ to ℝ induces a linear ordering on ℝ/ℚ and so these theorems immediately yield the following.

Corollary 4.  The division paradox (ℝ) < (ℝ/ℚ) is a theorem in either ZF + LM or ZF + PB.

Under AC one can find a choice set V  for the equivalence classes in ℝ/ℚ; this yields (ℝ/ℚ) ≤ (ℝ). Being nonmeasur-

able, V  cannot exist under LM. Theorem 3 is stronger: in ZF + (LM or PB), not only is there no choice set, but there is no

injection of any sort from ℝ/ℚ into ℝ, nor any linear ordering of ℝ/ℚ.

The proof of Theorem 3 given here, with its use of a linear order, is based on the ideas used by Sierpiński (alternate

approaches  are  in  Section  5).  Under  AC  there  is  a  well-ordering  of  the  reals;  that  yields  a  choice  set  for  the  classes  by

choosing  the  least  element  in  each  class.  So  the  well-ordering  gives  a  nonmeasurable  set.  Theorem 3  shows that  a  linear

ordering of the classes is enough to get a nonmeasurable set.

The proof of Theorem 2 that follows is a specialization of a more general approach (see Theorem 7).

Proof of Theorem 2.  Because x ↦ 1

1-x
- 1

x
 is a bijection of (0, 1) with ℝ, we need only inject (0, 1) into ℝ/ℚ. Enumerate ℚ

as {qm}m≥1. Build a tree by taking (0, 1) as the root. For level n, first shrink each interval at level n - 1 to a size smaller than

qn  and then choose two disjoint open subintervals of the shrunken interval. This ensures that no two points at level n differ

by any qm,  m ≤ n,  and also that  the interval-lengths shrink to 0 along any branch. Given x ∈ (0, 1),  let  s ∈ 2ℕ  be its  base-2

expansion, avoiding sequences with a tail of 1s. Taking 0 as left and 1 as right, s gives a branch in the tree and the Cantor

intersection theorem yields a unique real yx in all the intervals in the branch. The tree construction implies that the points yx,

0 < x < 1, are  inequivalent, as required.  ◼   XX It is not really necessary to call on C.I.Thm, but it is ok to do so.

Proof of Theorem 3.  Because x ∈ ℚ if and only if 2x ∈ ℚ, we have x ~ -x if and only if x ∈ ℚ. This means that ℚ ⊆ A and

also  that  ρ(x) = -x  defines  a  bijection  from the  irrationals  in  A  to  ℝ \ A  that  preserves  measure  and  meagerness.  Because

x ~ x + q and -x ~ -(x + q), A is ℚ-invariant. Assume A has the property of Baire. By the zero-one law, A is either meager or

comeager.  But A  is  meager if  and only if  A \ ℚ  is  meager if  and only if  ρ(A \ ℚ)  is  meager if  and only if  ℝ \ A  is  meager,

contradiction. Similar reasoning, with meager replaced by measure 0 and working with  A ⋂ [-1, 1], works for the measure

case.  ◼

To see  why the  division  paradox is  surprising,  recall  that  cardinality  is  a  partial  order  and so,  in  ZF,  there  are  four

possibilities for the cardinality relation between ℝ and ℝ/ℚ:

     1.  (ℝ) = (ℝ/ℚ)

     2.  ℝ and ℝ/ℚ are incomparable: (ℝ/ℚ) ≰ (ℝ) and (ℝ) ≰ (ℝ/ℚ)

     3.  (ℝ/ℚ) < (ℝ)

     4.  (ℝ) < (ℝ/ℚ)

The first choice is viable because it follows from AC: a choice set for the classes implies (ℝ/ℚ) ≤ (ℝ); then Theorem 2

and the Schröder–Bernstein theorem give equality. At first glance, one might expect (2) and (3) to be consistent with ZF. If

AC  is  false,  there  will  be  incomparable  sets,  so  perhaps  ℝ  and  ℝ/ℚ  could  be  such  a  pair;  and  because  the  continuum

hypothesis can fail, there could be room beneath the continuum for an uncountable set such as ℝ/ℚ, which would give (3).

ℝ/ℚ

3



AC  is  false,  there  will  be  incomparable  sets,  so  perhaps  ℝ  and  ℝ/ℚ  could  be  such  a  pair;  and  because  the  continuum

hypothesis can fail, there could be room beneath the continuum for an uncountable set such as ℝ/ℚ, which would give (3).

But Theorem 2 shows directly that (2) and (3) are always false. So (1)’s failure implies (4) and (4) says that the set that one

expects to be smaller, ℝ/ℚ, is in fact strictly larger. Corollary 4 shows that (4) is true in some situations.

A consequence of Corollary 4 is the interesting result that either LM or PB negates the generalized continuum hypothe-

sis [13].  An injection from O(ℝ/ℚ)  to O(ℝ)  is  given by A ↦⋃A.  An injection in the other direction starts  by forming the

surjection from ℝ/ℚ to ℝ given by sending [yx] to x and all other classes to 0, where yx is as in the proof of Theorem 2. By

inverse images, this induces an injection from O(ℝ) to O(ℝ/ℚ), and so the two power sets have the same cardinality. Corol-

lary  4  then  gives  (ℝ) < (ℝ/ℚ) < (O(ℝ/ℚ)) = (O(ℝ)),  showing  that  GCH  fails.  This  is  not  a  surprise  since  it  is  known  that

¬ AC ⇒¬ GCH, but is a concrete example of the failure.

Those who find Banach–Tarski duplications unpalatable but want to keep the many useful consequences of the axiom

of choice  can work in  ZFC and try,  whenever  possible,  to  restrict  themselves  to  measurable  sets.  A constructive  point  of

view also elucidates the division paradox, which can be studied profitably in ZFC provided one reinterprets cardinality.

The key idea is Borel cardinality: a naive view would define (X) ≤B (Y ) to mean that there is a one-one Borel function

F : X → Y .  But  there  is  no natural  topology on ℝ/ℚ  and so instead this  definition is  used:  Suppose X  and Y  are  complete

separable metric  spaces (known as Polish spaces),  each endowed with an equivalence relation (~  denotes either  one)  and

with the collections of equivalence classes denoted X
R

 and Y
R
; then (X

R
) ≤B (Y

R
)  means that there is a Borel function F : X → Y

such that a ~ b ⇔ F(a) ~ F(b). The proof of Corollary 4, with no essential change, yields the nonparadoxical and interesting

result that (ℝ) <B (ℝ/ℚ) (where the equivalence relation on ℝ is equality). That is, there is a nicely definable injection from ℝ
to ℝ that respects the rational equivalence relation in the codomain, but no such injection that respects the rational relation

in the domain. More precisely, (ℝ/ℚ) ≰B (ℝ): there is no Borel function F : ℝ→ℝ such that x - y ∈ ℚ⇔ F(x) = F(y). For the

theory and applications of Borel cardinality and Borel equivalence relations see [2, 4, 11].

4.   CURIOUSER  AND  CURIOUSER.   We  motivated  the  division  paradox  by  imagining  a  sports  league  having  more

teams  than  players.  We  could  equally  well  have  phrased  this  in  terms  of  more  conferences  than  teams:  the  conferences

divide up the teams just as the teams partition the players. But can there be more conferences than teams and more teams

than players? We'll refer to any example of this as a double division paradox.

Definition.  A double division paradox is a triple (X, Y , Z) such that (X) < (Y ) < (Z) with surjections f : X → Y  and g: Y → Z.

If (X, Y , Z) is a double division paradox, then we can think of X as the player pool, with x1 and x2 on the same team if

f (x1) = f (x2), and with teams y1  and y2  in the same conference if g(y1) = g(y2). The argument after the proof of Theorem 3

easily extends to show that a double division paradox yields a double failure of the GCH: (X) < (Y ) < (Z) < (O(X)).
As  this  section's  title  suggests,  a  double  division  paradox can  exist  (in  the  absence  of  AC).  The  following example

(and the comment after Theorem 6) was provided by Asaf Karagila and is included with his permission; ω1  is the smallest

uncountable ordinal.

Theorem 5 (ZF).  If no uncountable set of reals can be well-ordered, then (ℝ, ℝ⋃ω1, ℝ×ω1) is a double division paradox

starting with ℝ.

Proof.  We need Lebesgue’s classic surjection from ℝ to ω1: identify ℝ with O(ℕ×ℕ) (both have the cardinality of 2ℕ) and

map each set of pairs that is a well-ordering to its order type, sending other sets to 0. There is a surjection from ℝ to ℝ×ℝ
(e.g.,  by  the  method  in  note  1)  and  using  Lebesgue’s  map  on  the  second  coordinate  turns  it  into  a  surjection  from  ℝ  to

ℝ×ω1. This induces the two surjections needed for the paradox.

Injections  from  ℝ  to  ℝ⋃ω1  to  ℝ×ω1  are  trivial,  so  it  remains  to  show  that  there  are  no  injections  in  the  reverse

direction. An injection of ℝ⋃ω1  into ℝ  maps ω1  to an uncountable set of reals admitting a well-ordering, contrary to the

theorem’s  assumption.  Finally,  suppose  f : ℝ×ω1 →ℝ⋃ω1  is  one-one.  For  real  x,  let  Ax = f ({x}×ω1) ⋂ ω1.  If  no  Ax  is

empty,  then  ℝ  is  well-ordered  by  the  least  ordinal  in  Ax,  contradiction.  If  Ax = ∅,  then  f  embeds  {x}×ω1  into  ℝ,  again  a

contradiction.  ◼

Theorem 6.  Under ZF + DC + LM, there is a double division paradox starting with ℝ.

Proof.  Shelah [19, Theorem 5.1B] showed that the hypothesis of Theorem 5 holds in ZF + DC + LM.  ◼

One  can  go  farther.  There  can  be  a  quadruple  paradox:  more  teams  than  players,  more  conferences  than  teams,  more

leagues  than  conferences,  and  more  sports  than  leagues.  And  the  axiom  of  determinacy  [13]  implies  that

(ℝ, ℝ⋃ω1, ℝ⋃ω2, ℝ⋃ω3,…)  is  an  infinite  division paradox.   Alan:  Small  edit  needed.  The phrase  “There can be a

quadrauple paradox is too vague since “can be” doesn’t say whether it follows from LM or simply is consistent. In

submission we said that Coehn reals lead to it. Well, that is pretty irrelevant to the LM world. So we should delete

that sentence, byt retain the AD one. In summary, we have the double coming from LM and infinite from AD. Those
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submission we said that Coehn reals lead to it. Well, that is pretty irrelevant to the LM world. So we should delete

that sentence, byt retain the AD one. In summary, we have the double coming from LM and infinite from AD. Those

things are relevant. Agree?

5.  ALTERNATE SETTINGS FOR THE PARADOX.  The division paradox was first established not for ℝ/ℚ but for the

quotient group arising from the group (O(ℕ), △) and its subgroup ℱ  consisting of the finite subsets of ℕ. And there are other

alternate settings: two important relations are the Bernoulli shift and the tail relation. For the tail relation the underlying set

is O(ℕ) (viewed as 2ℕ) with sequences s and t being tail-equivalent if there are m, n ∈ ℕ so that sm+k = tn+k  for all k ∈ ℕ. The

shift  starts  with  the  integer-indexed binary  sequences  2ℤ,  with  equivalence  given  by  the  shift  map:  s ~shift t  if  and  only  if

there is an integer k so that, for every n, sn = tn+k.

An attractive feature of ~shift  is that the equivalence class of an anchored sequence …xyz a bcd… in 2ℤ  (the anchor—

the 0-coordinate—is a) is just the same object with the anchor omitted: …xyzabcd…; the no-origin version may be viewed

as  the  set  of  all  shifts  of  an  anchored  form  of  it.  The  division  paradox  for  2ℤ  says  that  there  are  more  anchored  doubly

infinite sequences than unanchored ones, a conclusion that is just as absurd as the paradox for ℝ and ℚ.

There are various approaches to the division paradox in these alternative settings. An elegant method is to generalize

the proofs of Section 3 to apply to all four contexts at once. Most of what follows is part of the folklore that includes work

of Sierpiński, Mycielski, and others, as well as more recent work in the area of Borel equivalence relations.

The topology on 2ℕ  is the usual product topology from the discrete set {0,1} and the measure (denoted λ) on 2ℕ  is the

product measure from {0,1}, where {0} and {1} each get measure 1 /2. The natural map f :2ℕ → [0,1] via binary expansions is

not  one-one (a  rational  of  the  form m/2n  arises  from a  sequence  ending in  only  0s  and another  ending in  1s),  but  it  does

induce a  bijection from 2ℕ \ f -1(D) to [0,1] \ D where D is the set of rationals of the form m/2n. Because countable sets are

meager and have measure 0, this bijection allows one to show that LM and PB are equivalent to the corresponding asser-

tions in 2ℕ. Topology and measure in 2ℤ  are similar (e.g., a basic open set is the set of sequences extending a fixed finitely

specified sequence and the measure of such an open set is defined to be 2-m  where m is the number of components speci-

fied; the standard outer measure construction then yields the product measure).

We  start  with  a  unified  approach  that  yields  Corollary  4  for  ℝ/ℚ,  the  finite  set  and  tail  relations  on  2ℕ,  and  the

Bernoulli shift. In what follows, ~ is an equivalence relation on X, which is one of ℝ, 2ℕ, or 2ℤ (though the arguments work

for any uncountable Polish space).

The next result generalizes Theorem 2.

Theorem 7 (ZF).  Suppose ~ is meager in X×X. Then (X) ≤ (X/ ~).

Proof.  The proof is similar to the proof of Theorem 2. Start with X  and build a tree with level n consisting of small closed

balls  that  are  disjoint  from  the  first  n  sets  in  the  representation  of  the  meager  relation. Intersections  along  a  branch  are

nonempty by the Cantor intersection theorem for compact sets. We leave the details to the reader.  ■

The relations we are studying all  satisfy the hypothesis  of  Theorem 7.  For the tail  relation define,  for  each j, k ∈ ℕ,

N j, k  to be {(s, t) : s beyond j equals t beyond k}. Then the tail relation is ⋃N j, k  and each N j, k  is nowhere dense in 2ℕ×2ℕ, as

we show next. Working with binary sequences, an open set in the product contains the product of two basic open sets in 2ℕ;

if they are determined by finite sequences with specified bits on coordinates at most m and n, respectively, extend each to

the coordinates in [0, max(m, n, j, k) + 1] by filling with all 0s in one and all 1s in the other. This handles 2ℕℱ  because its

relation is a subset of the tail relation. The argument for 2ℤ×2ℤ  is similar, where one appends 0s to both ends of one finite

string and 1s to the other. So Theorem 7 shows that the ambient set embeds into the set of classes for each of these relations.

In  fact,  embeddings  as  in  Theorem 7  can  be  defined  quite  directly  for  many  specific  relations.  Mycieski’s  original

proof used the harmonic expansion of a real [15, 27]). Here is an explicit embedding for the shift. Define f : 2ℕ → 2ℤshift by

f (abc…) =…ccbbabbcc…,  an  equivalence  class.  Then  a  is  the  center  of  a  unique  constant  block  of  odd  length  (the  two

constant sequences are easily handled) and this locates the origin and allows the recovery of abc… from its image. There-

fore f  is one-one, proving 2ℤ = 2ℕ ≤ 2ℤshift. 

For the second half of the division paradox, one can use the zero-one law in a way that avoids the use of a map from

the space  to  itself  (such as  x ↦-x  in  Theorem 3).  Invariant  sets  are  simply unions  of  some equivalence  classes.  The key

point is that any invariant set for 2ℕℱ , 2ℕ tail, or 2ℤshift obeys the zero-one law: an invariant set having the Baire prop-

erty is  meager or comeager and an invariant  measurable set  has measure 0 or 1.  For the measure case this  is  the same as

saying that λ is ergodic with respect to the relation. The results for the tail relation follow from the same for 2ℕℱ ; so there

are  four  cases  to  consider:  ℱ  and  either  meager  or  measure-zero  sets  and   hift  and  either  meager  or  measure-zero
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saying that λ is ergodic with respect to the relation. The results for the tail relation follow from the same for 2ℕℱ ; so there

are  four  cases  to  consider:  2ℕℱ  and  either  meager  or  measure-zero  sets  and  2ℤshift  and  either  meager  or  measure-zero

sets. We present the details only for the last case.

Assume A  is a shift-invariant measurable subset of 2ℤ,  with λ(A) = α  and fix ϵ > 0. Choose finitely many basic open

sets s
R
i  so that, with E =⋃ s

R
i, we have A ⊆ E and λ(E \ A) < ϵ (this uses outer measure, as in the proof in Section 2). Let n be

larger than the largest coordinate used in any si. Then the basic open sets that occur in F = σn(E) have support disjoint from

the basic sets s
R
i; this yields that λ(E ⋂ F) = λ(E) λ(F) = λ(E)2. Because A ⊆ E, we have A = σn A ⊆ σnE = F, so A ⊆ E ⋂ F and

the measure difference of these two sets is at most ϵ. Now, 

α - α2 ≤ (α - λ(E ⋂ F)) + λE - α2 < ϵ + α2 - λ(E)2 = ϵ + (λ(E) + α) · (λ(E) - α) ≤ 3 ϵ. 

This proves α - α2 = 0, so α is 0 or 1.

Instead of dealing with the specific details  of measure 0 and meager sets,  we can be more general.  Let ℐ ⊆ O(X)  be

any countably complete ideal.

Definition.  A set A ⊆ X  is almost Borel (w.r.t. ℐ) if for some Borel set B, A△B ∈ ℐ; A ⊆ X  is invariant if A is closed under

~.  The  relation  and  ideal  satisfy  the  zero-one  law  if  whenever  A  is  an  invariant  set  that  is  almost  Borel,  either  A ∈ ℐ  or

X \ A ∈ ℐ.

Now we can formulate a general result relating the zero-one law to the nonexistence of a certain injection.

Theorem 8 (ZF).  Suppose ~ is a relation on X and ℐ ⊆ O (X) is an ideal so that: X ∉ ℐ, each equivalence class is in ℐ, each

invariant set is almost Borel, and the relation and ideal satisfy the zero-one law. Then (X /~) ≰ (X).

Proof.   Define a filter U  on X/~  by placing A  in U  if  X \ ⋃A  is in ℐ;  then, because ⋃A  is invariant and therefore almost

Borel, the zero-one law implies that U  is an ultrafilter. An injection f : X/~ → X  would, by inverse image, transfer U  to an

ultrafilter on X and because (X) = 2ℕ, this gives an ultrafilter V  on 2ℕ. For each k, split 2ℕ into the set of sequences having a

0 in the kth position and the ones having a 1 there. One of these, call it  Ak,  is in V;  then ⋂Ak  is a singleton {s}  in V .  But

because f -1({s}) is either ∅ or a single equivalence class, it does not lie in U, contradiction.  ◼ 

Recall that any Lebesgue measurable set differs from a Borel set by a measure-zero set [16, §3] and by definition, a

set with the Baire property differs from a Borel set by a meager set. Therefore one can let ℐ be the measure-zero sets or the

meager sets, depending on whether one is assuming LM or PB. If we then assume DC, the ideal ℐ will be countably com-

plete  and  Theorem  8  applies.  In  this  way,  Theorems  7  and  8  give  the  division  paradox  for  ℝ/ℚ,  the  finite  set  and  tail

relations on 2ℕ, and the Bernoulli shift on 2ℤ, in the form given in Corollary 4.

We can eliminate the use of DC by a slightly different argument, one based on the proof of Theorem 3. We use [x] for the

equivalence class of x.

Theorem 9 (ZF).  Suppose the relation ~ and ideal ℐ satisfy the zero-one law and there is a function ρ :X → X such that

     1.  x ~ y if and only if ρ(x) ~ ρ(y);

     2.  ρ(ρ(x)) = x for all x.

     3.  if A ∈ ℐ, then ρ(A) ∈ ℐ;

     4.  {x ∈ X : x ≁ ρ(x)} is almost Borel and is not in ℐ;

Suppose C is a choice set for {{γ, ρ(γ)} : γ ∈ X/~ and γ ≠ ρ(γ)}. Then ⋃C is not almost Borel w.r.t. ℐ.

Proof.  Note first that, by (1) and (2), ρ(γ) is an equivalence class when γ is. Suppose A =⋃C is almost Borel. Let B = ρ(A);
then, by (2), B is the union of the classes that were not chosen in C and we have the disjoint union X = A ⋃ B ⋃ D, where

D = {x ∈ X : x ~ ρ(x)}. Because D is almost Borel by (4), so is B. Because A and B are unions of classes, they are ~-invariant.

Therefore, by the zero-one law, A ∈ ℐ  or B ∈ ℐ  (disjointness implies that the complements of both cannot be in ℐ). By (2)

and (3) this means that both are in ℐ, so A ⋃ B ∈ ℐ, contradicting X \ D ∉ ℐ, which holds by (4).  ◼

A function ρ as in Theorem 9 exists for our four examples, with either the meager or measure-zero ideal. For ℝ use x ↦-x,

while s ↦ 1 - s  works for 2ℕ ℱ  and the tail  relation. For the shift  relation, define ρ  to be the reflection: ρ(s)n = s-n.  Then

(1–3)  are  clear.  For  (4),  we  have  {s : s ~ ρ(s)} = ⋃k∈ℤ Nk,  where  Nk = {s : s is a k-shift of ρ(s)}.  Then  N0  is  the  set  of  palin-

dromic sequences with a single center element at the origin; N1 is the set of palindromes with a double center, the rightmost

of which is at the origin, and, for k ≥ 0, N2k  (resp., N2k+1) is the k-shift of N0  (resp., N1); the negative case is similar. Then

each Nk is nowhere dense and has measure 0, and the same is true of their union. Moreover the proof does not use countable

additivity and so works in ZF.

6



≥
each Nk is nowhere dense and has measure 0, and the same is true of their union. Moreover the proof does not use countable

additivity and so works in ZF.

Here  are  the  details  in  the  measure  case.  We can cover  N0  by  [000] ⋃ [010] ⋃ [101] ⋃ [111],  where  [abc]  is  the  basic  set

consisting of all sequences extending abc, with the origin at b. This union has measure 4 ·2-3 = 1 /2. Similarly 

   N0 ⊆ [00000] ⋃ [00100] ⋃ [01010] ⋃ [01110] ⋃ [10001] ⋃ [10101] ⋃ [11011] ⋃ [11111]

a  set  of  measure  8 ·2-5 = 1 /4.  Continuing  in  this  way  shows  that  N0’s  measure  can  be  made  arbitrarily  small.  Similar

coverings work for each Ni. Thus, for any ϵ > 0, we can explicitly prove λ(Nk) ≤ ϵ2k+1, which gives λ(⋃Nk) < ϵ, as claimed.

Corollary 10 (ZF).   Under  LM or  PB,  there is  a division paradox in ℝ/ℚ,  2ℕ ℱ,  2ℕ  tail,  and  2ℤ shift.  That  is,  in each

case (X) < (X/ ~).

Proof.  Assume PB and let ℐ be the meager ideal. Theorem 7 gives the injection of X into X/ ~. Let ρ be as given before the

corollary. If there were an injection f : X/ ~ → X,  then there would be a choice set C  as in Theorem 9 (choose γ  if  f (γ)  is
smaller than f (ρ(γ))  in the natural linear ordering of X,  otherwise choose ρ(γ)). Now apply Theorem 9 to conclude that C

does not differ from a Borel set by a meager set, in contradiction to all sets having the Baire property. The proof under LM

is the same, using measure-zero sets.  ◼

We  conclude  with  some  connections  to  modern  descriptive  set  theory.  One  can  show  [2,  Theorem  7.1]  in  ZF  that

ℝ/ℚ,  2ℕℱ,  2ℕtail, and 2ℤshift all have the same cardinality. This means that the division paradox in one of these yields

the paradox for all of them. This was how the original paradox in ℝ/ℚ was derived by Mycielski: he started with 2ℕℱ . But

if one introduces the proper notion of isomorphism, then these four structures collapse to three.

The  proper  definition  is  Borel  isomorphism:  the  existence  of  a  Borel  bijection  f :X → Y  so  that  x ~ x′  if  and  only  if

f (x) ~ f (x′)  (see  [2,  Section  9]).  One  then  has  that  the  three  relations  based  on  the  power  sets  are  not  Borel  isomorphic,

while  ℝ/ℚ  is  Borel  isomorphic  to  one  of  them.  It  is  not  immediately  obvious  which  of  the  power  set  quotients  will  be

isomorphic to ℝ/ℚ!

It  turns  out  that  ℝ/ℚ  is  Borel  isomorphic  to  2ℕtail.  The  reason  is  that  these  two relations  have  a  property  that  the

others do not. A relation ~ on X  is paradoxical if X  contains disjoint A1 and A2 and there are Borel bijections fi : X → Ai so

that, for all x, x ~ fi(x). Then the tail relation on 2ℕ  is paradoxical via the functions fi  that prepend i to each sequence. And

ℝ/ℚ  is  paradoxical  via  ℝ = (-∞, 0] ⋃ (0, ∞);  ℝ  maps  to  (0,∞)  (the  negative  case  is  similar)  by  sending  (n, n + 1]  to

(m, m + 1] (n ∈ ℤ, m ∈ ℕ), using alternation to fit them all in. The other two relations are not paradoxical in this sense, and

so cannot be Borel isomorphic to ℝ/ℚ.

6.  OPEN QUESTIONS.   The Banach–Tarski paradox violates the intuition one has from physical reality and LM elimi-

nates the paradox. But the connection with topology is more subtle. Dougherty and Foreman (see [26, §11.2]) proved that,

in  ZFC,  one  can  derive  the  Banach–Tarski  paradox with  the  pieces  all  having  the  property  of  Baire.  But  it  is  not  known

whether PB eliminates the classic version of the paradox; it seems reasonable to conjecture that the answer to Question 1 is

NO.

Question 1.  Is the negation of the Banach–Tarski paradox a theorem of ZF + DC + PB?

Let GM (for general measure) be: For each n, there is a countably additive, isometry-invariant measure on O(ℝn) that

assigns measure 1 to the unit cube. Then DC + LM implies GM. But GM eliminates the Banach–Tarski paradox and has the

advantage that its consistency does not require a large cardinal assumption (see [26, §15.1]). Because the zero-one law uses

outer measure, it is not clear that the proof of Theorem 3 can be modified to work under GM and so we have the following

question.

Question 2.  Is the division paradox a theorem of ZF + DC + GM?

To understand how the division paradox relates to more general statements, we recall two classical principles (see [1]

for the history of these).

Definition.   The  partition  principle  PP  is:  If  Y  is  a  family  of  disjoint  nonempty  subsets  of  X,  then  (Y ) ≤ (X).  The  weak

partition principle WPP is: If Y  is a family of disjoint nonempty subsets of X, then (X) ≮ (Y ).

If WPP holds then one cannot have the division paradox for ℝ and ℝ/ℚ, or for any other sets. Easy implications are

AC ⇒ PP ⇒ WPP. More subtle are PP ⇒ DC and PP ⇒ AC for well-ordered families (A. Pelc; see [12, p. 10]).

Note that a violation of PP is less problematic than a violation of WPP.  If we did not have Theorem 2 and knew only

that, under LM, ≰ (ℝ) (i.e., ℝ and ℝ/ℚ violated PP, as opposed to WPP), it would not be all that disturbing as it says

ℝ ℝ/ℚ
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Note that a violation of PP is less problematic than a violation of WPP.  If we did not have Theorem 2 and knew only

that, under LM, (ℝ/ℚ) ≰ (ℝ) (i.e., ℝ and ℝ/ℚ violated PP, as opposed to WPP), it would not be all that disturbing as it says

only that a certain injection does not exist. The interesting point is Corollary 4, which states that ℝ and ℝ/ℚ are comparable,

but the comparison goes the wrong way: the set of Vitali classes of real numbers has more elements than the set of reals!

These partition principles lead to two fascinating open questions.

Question 3.  (a) Does PP imply AC?  (b) Does WPP imply AC?

An affirmative answer to  (b)  would be of  some importance.  For  then we could abandon AC as  an axiom and work

with  ZF + WPP,  in  the  knowledge  that  it  is  no  different  than  ZFC.  But  WPP feels  more  fundamentally  obvious  than  the

axiom of choice. Of course, absent any proofs, this is only speculation and it would not be terribly surprising if WPP was

strictly weaker than AC.

7.   CONCLUSION.   We  believe  that  the  division  paradox  is  an  obviously  false  statement  because  of  how  seriously  it

undermines our intuition about how sets work—even more so than the Banach–Tarski paradox. By Corollary 4, this implies

that ZF + LM is an untenable theory. On the other hand, the ball-duplication paradox really presents no serious problems.

The sets that arise are not connected to physical reality, and a century of development has shown that there are no serious

consequences of living with nonmeasurable sets.

Of course one can take the opposite view and consider the division paradox a small price to pay in order to be rid of

nonmeasurable sets (see [14]); but this price strikes us as being excessively high due to its counterintuitive nature. A more

extreme view, presented by Feferman [3], is to view the duplication paradox as being so severe as to call for the banishment

of the unrestricted use of sets.

It  makes  little  sense  to  say that  either  the  Banach–Tarski  paradox or  the  negation of  the  division paradox is  true  in

physical  reality.  Instead we are trying to understand which formal axiom system best  describes mathematics as it  is  prac-

ticed. Mathematics appears to work well under a system that combines the best aspects of Platonism (mathematics describes

a real world) and formalism (examine proofs under diverse axiom systems). Our perceived physical world certainly affects

how we think of much of mathematics, but formalism combines the precision of proofs with the possibility of imaginatively

and profitably examining a variety of axiom systems in realms beyond physical reality. Despite the Banach–Tarski paradox,

the axiom system ZFC has shown itself to be up to the task of serving as a solid foundation for mathematics.

8.  NOTES.

1.  LM negates the Banach–Tarski paradox.   Because 1 + 1 ≠ 1, it  suffices to show that all  subsets of ℝ3  are Lebesgue

measurable.  Cantor’s  classic  digit-mixing  bijection  from  [0,∞)  to  [0,∞)3  uses  the  positions  congruent  to  i  (mod  3)

(i = 0, 1, 2) to split the decimal digits into three infinite strings. This function preserves the measure of intervals (in dimen-

sions 1 and 3) and hence preserves outer measure. Therefore all subsets of the first octant are measurable and the same then

holds for all octants and, by finite additivity, for all subsets of ℝ3. This is also a consequence of more general characteriza-

tion theorems; see [11, Theorem 17.41] or [8, Appendix A].

2.   Measure  and  large  cardinals.   While  there  are  many  similarities  between  the  concepts  of  Lebesgue  measure  and

meager sets, there is one remarkable difference. It is that LM is stronger in that its consistency requires the consistency of

IC,  the assertion that  an inaccessible  cardinal  exists.  To summarize much seminal  and difficult  work by Solovay,  Shelah,

and others, let Con(T) mean that the theory T is consistent. Then

   •  ZF + IC ⇒ Con(ZF); hence by Gödel's second incompleteness theorem we cannot derive Con(ZF + IC) from Con(ZF).

   •  Con(ZF)⇔ Con(ZF + DC + PB).

   •  Con(ZF + IC)⇔ Con(ZF + DC + LM).

In short,  the consistency strength of LM is strictly greater than that of PB (but see the discussion of GM in Section 6 for

how to avoid inaccessibles when negating the Banach–Tarski paradox).

ACKNOWLEDGMENTS.  We are grateful to Andreas Blass for drawing our attention to the division paradox, and to Randall Dougherty, Matt

Foreman, Asaf Karagila, Menachem Magidor, Greg Moore, Andrew Marks, and Dan Velleman for much helpful correspondence.

REFERENCES

  1.  B. Banaschewski, G. H. Moore, The dual Cantor–Bernstein theorem and the partition principle, Notre Dame J. Formal 

Logic 31 (1990) 375–381.

  2.  R. Dougherty, S. Jackson, A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. 

Soc. 341 (1994) 193–225.

8



  3.  S. Feferman, Mathematical intuition vs. mathematical monsters, Synthèse 125 (2000) 317–332.

  4.  S. Gao, Invariant Descriptive Set Theory, Chapman and Hall/CRC, Boca Raton, 2008.

  5.  C. S. Hardin, A. D. Taylor, A peculiar connection between the axiom of choice and predicting the future, Amer. Math. 

Monthly 115 (2008) 91–96.

  6.  ———, The Mathematics of Coordinated Inference, NewYork, Springer, 2013.

  7.  H. Herrlich, Axiom of Choice, Berlin, Springer, 2006. 

  8.  D. Kerr, H. Li, Ergodic Theory: Independence and Dichotomies, New York, Springer, 2013.

  9.  T. J. Jech, The Axiom of Choice, New York, Dover, 2013.

10.  A. Kanamori, The Higher Infinite, 2nd. ed., New York: Springer, 2003.

11.  A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, New York, Springer, 1995.

12.  G. H. Moore, Zermelo’s Axiom of Choice, New York, Springer, 1982.

13.  J. Mycielski, On the axiom of determinateness, Fund. Math. 53 (1964) 205–224.

14.  ———, A system of axioms of set theory for the rationalists, Notices Amer. Math. Soc. 53 (2006) 206–213.

15.  J. Mycielski, B. Osofsky, Problem 5937 solution, Amer. Math. Monthly 82 (1975) 308–309.

16.  J. C. Oxtoby, Measure and Category, Graduate Texts in Mathematics, vol. 2, New York, Springer, 1971.

17.  R. Penrose, The Road to Reality, New York, Knopf, 2005.

18.  J. Raisonnier, A mathematical proof of S. Shelah’s theorem on the measure problem and related results, Isr. J. Math. 48 

(1984) 48–56.

19.  S. Shelah, Can you take Solovay’s inaccessible away?, Isr. J. Math. 48 (1984) 1–47.

20.  W. Sierpiński, Sur quelques problèmes qui impliquent des fonctions non-mesurables, Comptes Rendus Acad. Sci. Paris 

164 (1917) 882–884.

21.  ———, L’axiome de M. Zermelo et son rôle dans la théorie des ensembles et l’analyse, Bull. Intern. Acad. Sci. Cracovie 

A (1918) 97–152.

22.  ———, Fonctions additives non complètement additives et fonctions non mesurables, Fund. Math. 30 (1938) 96–99.

23.  ———, Sur une proposition qui entraîne l’existence des ensembles non mesurables, Fund. Math. 34 (1947) 1–5.

24.  R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970) 1–56.

25.  J. Stern, Regularity properties of definable sets of reals, Ann. Pure App. Logic 29 (1985) 289–324.

26.  G. Tomkowicz, S. Wagon, The Banach–Tarski Paradox, 2nd ed., New York: Cambridge, 2016.

27.  E. W. Weisstein, Harmonic expansion, MathWorld, A Wolfram Web Resource,

              http://mathworld.wolfram.com/HarmonicExpansion.html.

03E25, 03E30 28A05, 03E15

Keywords: axiom of choice, Banach–Tarski paradox, Lebesgue measure, property of Baire, cardinality

9


