
Problem 1213.  A Rare, if Obtuse, Ratio

Find an obtuse triangle with sides of integer length and having two acute angles in the ratio 7 to 5.

Source: Dick Hess, All-Star Mathlete Puzzles, Sterling Publishing Co., New York, 2009, Problem 
60. The book is a lovely collection of unusual puzzles.
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SOLUTION

Problem 1213 was solved by David Broadhurst, Joseph DeVincentis, Russ Gordon, Richard Board-
man, John Snyder, and Franz Pichler.

Problem 1213 was first posed by Dick Hess in the Pi Mu Epsilon Journal and the notes below 
follow the solution of William Pierce (Pi Mu Epsilon Journal, Problem 971, 11:3 Fall 2000, 
159-160). These notes start with an elementary solution to the problem, and then discuss a more 
sophisticated approach uses Chebyshev polynomials (David Broadhurst, Russ Gordon); there is also 
an approach using Gaussian integers (Walter Taylor). It is possible that the Chebyshev polynomial 
approach could lead to a proof of minimality of the smallest solution. Those approaches also allow 
an easy algorithm to solve the problem for any other ratio in place of 5:7.
Let the sides be a, b, c, opposite angles A = 5 θ, B = 7 θ, and C = π-− 12 θ. Straightforward trig 
expansion and the Law of Sines then yields a constant k and polynomials pi so that:
     a = k sin(5 θ) = k sin(θ) p1(cos θ)
     b = k sin(7 θ) = k sin(θ) p2(cos θ)
     c = k sin(12 θ) = k sin(θ) p3(cos θ)
with the polynomials pi given by:
     p1 = 16 x4 -− 12 x2 + 1
     p2 = 64 x6 -− 80 x4 + 24 x2 -− 1
     p3 = 2048 x11 -− 5120 x9 + 4608 x7 -− 1792 x5 + 280 x3 -− 12 x
The Cosine Law proves that cos θ will be rational. One could just set this to rs , but it is better to 
assume the denominator is even -- cos θ = r

2 s  -- as this will lead to smaller solutions because of 
cancellation of powers of 2 with the even coefficients. Let k = s11

sin θ , which will yield integers. The 
original proposer (Dick Hess) and many solvers among you, used the more natural, but less effi-
cient, choice of  cos θ = r

s . Then we get:

a = s11 p1 r
2 s  = s11 r4-−3 r2 s2+s4

s4 = s7r4 -− 3 r2 s2 + s4
b = s11 p2 r

2 s  = s11 r6-−5 r4 s2+6 r2 s4-−s6

s6 = s5r6 -− 5 r4 s2 + 6 r2 s4 -− s6
c = s11 p3 r

2 s  =

s11 r11-−10 r9 s2+36 r7 s4-−56 r5 s6+35 r3 s8-−6 rs10

s11 = rr10 -− 10 r8 s2 + 36 r6 s4 -− 56 r4 s6 + 35 r2s8 -− 6 s10

The obtuse angle forces θ < π
24 , so cos θ < cos π

24 = 0.9914 … = 1-− 1
116.889 … . This means that 2s 

needs to be at least 117, so we take it to be 118 (and this is where one gets a larger solution by 
taking the denominator to be not 118, but 117, and changing the s11 to (2 s)11). Then r is 117 and the 
formula above give the solution
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a = 140 737 857 915 018 789 245 ~∼ 1.4 · 1020

b = 183 542 735 119 347 169 603 ~∼ 1.8 · 1020

c = 232 117 687 881 273 946 752 ~∼ 2.3 · 1020

Without the even denominator trick, one gets solutions near 1023. Here is a picture of the likely 
smallest solution.
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Here is a solution to the given problem by Walter Taylor (Univ. of Colorado); a similar technique 
(two right triangles) was used by Richard Boardman. Let (a, b, c) be a Pythagorean triangle whose 
slope is less than tan(7.5°). The smallest such is (17, 144, 145). Let z = a+ b ⅈ. Write z5 = r+ s ⅈ, 
with length t, and  z7 = u+ v ⅈ, with length w; all variables are integers. Note that (r, s, t) and 
(u, v, w) are Pythagorean triples. Assume that r and u are the short sides. So now form the 
Pythagorean triangles (u r, u s, u t) and  (r u, r v, r w). Glue these together along the short sides to get 
the desired triangle. Doing this for (17, 144, 145) leads to
(3724041636682433897159375,2816668910548821011640625,5015776094542593164296512).
This is of size about 1024, which is a bit large, but it satisfies the extra condition that the altitude is 
an integer (as are the two pieces of the longest side).
David Broadhurst (Open University, UK) (and also Russ Gordon, Whitman College), used Cheby-
shev polynomials to solve the problem. If Un(x) is the Chebyshev polynomial of the second kind, 

then sin((n+1) θ)
sin(n θ) = Un(c) = ∑≥2 k≥0 (-−1)k  n-− kk  (2 c)n-−2 k, where c = cos θ. Let the acute angles be 5 θ 

and 7 θ. Then θ < π
24 , and the cosines of the three angles of the triangle are all rational. The Sine 

Law then tells us that the sides are in proportion U4(c) :U6(c) :U11(c). To get a small solution, set 
c = 2 n-−1

2 n  with n = 59, the smallest value consistent with c > cos π
24 . Then the smallest side has 

length 

5911U4 1
118  = 597 594 -− 3 (59 · 117)2 + 1174 = 597 1172 -− 5922 -− (59 · 117)2

= 140 737 857 915 018 789 245
I investigated the general case where (5, 7) is replaced by (m, n); the methods above all work the 
same way. 

I wondered if there is a formula for the simplest case, where m = 1 and David Broadhurst showed 

that a solution is given by  1
4 sin2 π

4 n+4 

n
, where this gives the shortest side of the triangle. Whether 

this solution, and the ones presented above, are the smallest is still open.
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